Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide.

Identifieur interne : 000C52 ( Main/Exploration ); précédent : 000C51; suivant : 000C53

Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide.

Auteurs : Jun Lu [Suède] ; Eng-Hui Chew ; Arne Holmgren

Source :

RBID : pubmed:17640917

Descripteurs français

English descriptors

Abstract

Arsenic trioxide (ATO) is an effective cancer therapeutic drug for acute promyelocytic leukemia and has potential anticancer activity against a wide range of solid tumors. ATO exerts its effect mainly through elevated oxidative stress, but the exact molecular mechanism remains elusive. The thioredoxin (Trx) system comprising NADPH, thioredoxin reductase (TrxR), and Trx and the glutathione (GSH) system composed of NADPH, glutathione reductase, and GSH supported by glutaredoxin are the two electron donor systems that control cellular proliferation, viability, and apoptosis. Recently, the selenocysteine-dependent TrxR enzyme has emerged as an important molecular target for anticancer drug development. Here, we have discovered that ATO irreversibly inhibits mammalian TrxR with an IC(50) of 0.25 microM. Both the N-terminal redox-active dithiol and the C-terminal selenothiol-active site of reduced TrxR may participate in the reaction with ATO. The inhibition of MCF-7 cell growth by ATO was correlated with irreversible inactivation of TrxR, which subsequently led to Trx oxidation. Furthermore, the inhibition of TrxR by ATO was attenuated by GSH, and GSH depletion by buthionine sulfoximine enhanced ATO-induced cell death. These results strongly suggest that the ATO anticancer activity is by means of a Trx system-mediated apoptosis. Blocking cancer cell DNA replication and repair and induction of oxidative stress by the inhibition of both Trx and GSH systems are suggested as cancer chemotherapeutic strategies.

DOI: 10.1073/pnas.0701549104
PubMed: 17640917
PubMed Central: PMC1940330


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide.</title>
<author>
<name sortKey="Lu, Jun" sort="Lu, Jun" uniqKey="Lu J" first="Jun" last="Lu">Jun Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm</wicri:regionArea>
<wicri:noRegion>SE-17177 Stockholm</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chew, Eng Hui" sort="Chew, Eng Hui" uniqKey="Chew E" first="Eng-Hui" last="Chew">Eng-Hui Chew</name>
</author>
<author>
<name sortKey="Holmgren, Arne" sort="Holmgren, Arne" uniqKey="Holmgren A" first="Arne" last="Holmgren">Arne Holmgren</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17640917</idno>
<idno type="pmid">17640917</idno>
<idno type="doi">10.1073/pnas.0701549104</idno>
<idno type="pmc">PMC1940330</idno>
<idno type="wicri:Area/Main/Corpus">000C54</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C54</idno>
<idno type="wicri:Area/Main/Curation">000C54</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C54</idno>
<idno type="wicri:Area/Main/Exploration">000C54</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide.</title>
<author>
<name sortKey="Lu, Jun" sort="Lu, Jun" uniqKey="Lu J" first="Jun" last="Lu">Jun Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm</wicri:regionArea>
<wicri:noRegion>SE-17177 Stockholm</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chew, Eng Hui" sort="Chew, Eng Hui" uniqKey="Chew E" first="Eng-Hui" last="Chew">Eng-Hui Chew</name>
</author>
<author>
<name sortKey="Holmgren, Arne" sort="Holmgren, Arne" uniqKey="Holmgren A" first="Arne" last="Holmgren">Arne Holmgren</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Arsenic Trioxide (MeSH)</term>
<term>Arsenicals (MeSH)</term>
<term>Cell Line, Tumor (MeSH)</term>
<term>Cell Survival (drug effects)</term>
<term>Enzyme Inhibitors (toxicity)</term>
<term>Glutathione (pharmacology)</term>
<term>Humans (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Neoplasms (enzymology)</term>
<term>Neoplasms (pathology)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxides (toxicity)</term>
<term>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization (MeSH)</term>
<term>Thioredoxin-Disulfide Reductase (antagonists & inhibitors)</term>
<term>Thioredoxin-Disulfide Reductase (chemistry)</term>
<term>Thioredoxin-Disulfide Reductase (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Antienzymes (toxicité)</term>
<term>Composés de l'arsenic (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Glutathion (pharmacologie)</term>
<term>Humains (MeSH)</term>
<term>Lignée cellulaire tumorale (MeSH)</term>
<term>Oxydes (toxicité)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Spectrométrie de masse MALDI (MeSH)</term>
<term>Survie cellulaire (effets des médicaments et des substances chimiques)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Thioredoxin-disulfide reductase (antagonistes et inhibiteurs)</term>
<term>Thioredoxin-disulfide reductase (composition chimique)</term>
<term>Thioredoxin-disulfide reductase (métabolisme)</term>
<term>Trioxyde d'arsenic (MeSH)</term>
<term>Tumeurs (anatomopathologie)</term>
<term>Tumeurs (enzymologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Thioredoxin-Disulfide Reductase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Thioredoxin-Disulfide Reductase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Thioredoxin-Disulfide Reductase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Glutathione</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Enzyme Inhibitors</term>
<term>Oxides</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Arsenic Trioxide</term>
<term>Arsenicals</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Tumeurs</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Thioredoxin-disulfide reductase</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Thioredoxin-disulfide reductase</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Survival</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Survie cellulaire</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Tumeurs</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Neoplasms</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Thioredoxin-disulfide reductase</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Neoplasms</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Glutathion</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Antienzymes</term>
<term>Oxydes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Cell Line, Tumor</term>
<term>Humans</term>
<term>Molecular Sequence Data</term>
<term>Oxidation-Reduction</term>
<term>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Composés de l'arsenic</term>
<term>Données de séquences moléculaires</term>
<term>Humains</term>
<term>Lignée cellulaire tumorale</term>
<term>Oxydoréduction</term>
<term>Spectrométrie de masse MALDI</term>
<term>Séquence d'acides aminés</term>
<term>Trioxyde d'arsenic</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Arsenic trioxide (ATO) is an effective cancer therapeutic drug for acute promyelocytic leukemia and has potential anticancer activity against a wide range of solid tumors. ATO exerts its effect mainly through elevated oxidative stress, but the exact molecular mechanism remains elusive. The thioredoxin (Trx) system comprising NADPH, thioredoxin reductase (TrxR), and Trx and the glutathione (GSH) system composed of NADPH, glutathione reductase, and GSH supported by glutaredoxin are the two electron donor systems that control cellular proliferation, viability, and apoptosis. Recently, the selenocysteine-dependent TrxR enzyme has emerged as an important molecular target for anticancer drug development. Here, we have discovered that ATO irreversibly inhibits mammalian TrxR with an IC(50) of 0.25 microM. Both the N-terminal redox-active dithiol and the C-terminal selenothiol-active site of reduced TrxR may participate in the reaction with ATO. The inhibition of MCF-7 cell growth by ATO was correlated with irreversible inactivation of TrxR, which subsequently led to Trx oxidation. Furthermore, the inhibition of TrxR by ATO was attenuated by GSH, and GSH depletion by buthionine sulfoximine enhanced ATO-induced cell death. These results strongly suggest that the ATO anticancer activity is by means of a Trx system-mediated apoptosis. Blocking cancer cell DNA replication and repair and induction of oxidative stress by the inhibition of both Trx and GSH systems are suggested as cancer chemotherapeutic strategies.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17640917</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>09</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0027-8424</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>104</Volume>
<Issue>30</Issue>
<PubDate>
<Year>2007</Year>
<Month>Jul</Month>
<Day>24</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide.</ArticleTitle>
<Pagination>
<MedlinePgn>12288-93</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Arsenic trioxide (ATO) is an effective cancer therapeutic drug for acute promyelocytic leukemia and has potential anticancer activity against a wide range of solid tumors. ATO exerts its effect mainly through elevated oxidative stress, but the exact molecular mechanism remains elusive. The thioredoxin (Trx) system comprising NADPH, thioredoxin reductase (TrxR), and Trx and the glutathione (GSH) system composed of NADPH, glutathione reductase, and GSH supported by glutaredoxin are the two electron donor systems that control cellular proliferation, viability, and apoptosis. Recently, the selenocysteine-dependent TrxR enzyme has emerged as an important molecular target for anticancer drug development. Here, we have discovered that ATO irreversibly inhibits mammalian TrxR with an IC(50) of 0.25 microM. Both the N-terminal redox-active dithiol and the C-terminal selenothiol-active site of reduced TrxR may participate in the reaction with ATO. The inhibition of MCF-7 cell growth by ATO was correlated with irreversible inactivation of TrxR, which subsequently led to Trx oxidation. Furthermore, the inhibition of TrxR by ATO was attenuated by GSH, and GSH depletion by buthionine sulfoximine enhanced ATO-induced cell death. These results strongly suggest that the ATO anticancer activity is by means of a Trx system-mediated apoptosis. Blocking cancer cell DNA replication and repair and induction of oxidative stress by the inhibition of both Trx and GSH systems are suggested as cancer chemotherapeutic strategies.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Jun</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chew</LastName>
<ForeName>Eng-Hui</ForeName>
<Initials>EH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Holmgren</LastName>
<ForeName>Arne</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>07</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001152">Arsenicals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004791">Enzyme Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010087">Oxides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="D013880">Thioredoxin-Disulfide Reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>S7V92P67HO</RegistryNumber>
<NameOfSubstance UI="D000077237">Arsenic Trioxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000077237" MajorTopicYN="N">Arsenic Trioxide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001152" MajorTopicYN="N">Arsenicals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045744" MajorTopicYN="N">Cell Line, Tumor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002470" MajorTopicYN="N">Cell Survival</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004791" MajorTopicYN="N">Enzyme Inhibitors</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009369" MajorTopicYN="N">Neoplasms</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010087" MajorTopicYN="N">Oxides</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019032" MajorTopicYN="N">Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013880" MajorTopicYN="N">Thioredoxin-Disulfide Reductase</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>9</Month>
<Day>11</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17640917</ArticleId>
<ArticleId IdType="pii">0701549104</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.0701549104</ArticleId>
<ArticleId IdType="pmc">PMC1940330</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Med Res Rev. 2004 Jan;24(1):40-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14595672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Dec 12;278(50):50226-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14522978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Resist Updat. 2004 Apr;7(2):97-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15158766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2004 Jul;11(7):737-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15002036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2004 Mar;3(3):324-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14726646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1982 Dec 21;21(26):6628-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7159551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Jan;9(1):25-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17115886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carcinogenesis. 2006 Dec;27(12):2538-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16777982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cancer Biol. 2006 Dec;16(6):452-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17056271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cancer Biol. 2006 Dec;16(6):420-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17092741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2006 Dec 1;66(23):11416-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17145888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Appl Pharmacol. 2007 Jan 1;218(1):88-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17156807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Leukemia. 2000 Feb;14(2):262-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10673743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Mar 2;404(6773):42-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10716435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1985;54:237-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3896121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Aug 25;264(24):13963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2668278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Oct 5;264(28):16502-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2674134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 1992 Apr 1;43(7):1621-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1567483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1995;252:199-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7476354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):6146-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8650234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 1996 Aug 1;88(3):1052-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8704214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3633-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9108029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Apr 10;273(15):8581-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9535831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 May 1;17(9):2596-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9564042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 1999 Jan 1;93(1):268-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9864170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Feb 19;274(8):4722-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9988709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 1999 Sep 15;94(6):2102-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10477740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Oct 8;292(5):1003-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10512699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 1999 Oct;12(10):924-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10525267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anticancer Drugs. 2005 Feb;16(2):119-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15655408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):673-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15637150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2005 Feb 1;105(3):1237-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):348-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15706083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Oncol. 2005 Apr 1;23(10):2396-410</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15800332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pharmacol Toxicol. 2005;45:51-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15822171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2004 Oct;1(1):61-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15782154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2005 Jun 15;38(12):1543-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2005 Jun 2;24(24):3853-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15824742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 1;280(26):25284-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15879598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hematology. 2005 Jun;10(3):205-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16019469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2005 Sep 1;39(5):696-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16085187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Biosci. 2006;11:300-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16146732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Oct 18;102(42):15018-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16217027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Mol Med. 2005 Dec;11(12):571-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16290020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2006 Jan 1;40(1):138-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16337887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Apr 21;281(16):10691-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16481328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2006 Apr 15;66(8):4410-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16618767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 May 12;281(19):13005-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16565519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutat Res. 2006 Jun;612(3):215-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16574468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2006 Jul 21;346(1):242-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16756956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell. 2006 Sep;10(3):175-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16959608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2006 Sep-Oct;8(9-10):1881-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16987040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 May 23;97(11):5854-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10801974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jun 16;275(24):18121-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10849437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 Oct;267(20):6102-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11012661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2000 Aug;29(3-4):312-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11035260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharmacol Exp Ther. 2001 Jan;296(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11123355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2001 Jan 1;97(1):264-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11133770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2000 Dec;57(13-14):1825-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11215509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 2001 Feb 15;531(Pt 1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11179387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):3673-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11259642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 2001 May;14(5):517-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11368549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9533-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11481439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Appl Pharmacol. 2001 Oct 15;176(2):127-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11601889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2001 Nov 15;31(10):1170-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11705695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Breast Cancer Res Treat. 2002 May;73(1):61-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12083632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2002 Jul 15;62(14):3893-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12124315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Cancer Res. 2002 Dec;8(12):3658-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12473574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2002 Nov;59(11):1972-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12530527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1439-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12775843</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chew, Eng Hui" sort="Chew, Eng Hui" uniqKey="Chew E" first="Eng-Hui" last="Chew">Eng-Hui Chew</name>
<name sortKey="Holmgren, Arne" sort="Holmgren, Arne" uniqKey="Holmgren A" first="Arne" last="Holmgren">Arne Holmgren</name>
</noCountry>
<country name="Suède">
<noRegion>
<name sortKey="Lu, Jun" sort="Lu, Jun" uniqKey="Lu J" first="Jun" last="Lu">Jun Lu</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C52 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C52 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:17640917
   |texte=   Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:17640917" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020